Mobile Number Portability
20-23 July 2015

Muhammad Talib Dogar
DG (Services)

Presentation copied from the following link and reproduced here for convenience
http://www.pta.gov.pk/trg/d2_p3.ppt
Mobile Number Portability

Ability of a cellular mobile service user to change his subscription to another cellular network operator while retaining his original directory number (including the NDC/Operator prefix).

Porting

The process of shifting the connectivity of a subscriber from one operator to another while retaining the same subscriber number.
Types of Number Portability

Operator Portability
Is the facility enabling a customer to retain the original telephone number switching from one Service Provider/Mobile Operator to another within a defined geographic area. Applies both to fixed and mobile networks.

Service Portability
Is the facility enabling a customer to retain the original telephone number after switching from one telecom service to another (i.e. fixed to mobile).

Geographic Portability
Is the facility enabling a customer to retain the original telephone number when moving from one geographical/physical location to another. Geographic Portability only applies to fixed networks.
While National Regulators push MNP to boost competition and benefit customers, different players can have opposite business perspectives.

MNP Objectives

<table>
<thead>
<tr>
<th>Regulators perspective</th>
<th>Business perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Enhance competition among mobile operators by:</td>
<td>- ATTACKER: promote successful MNP by fostering process simplicity and implementing a simple and quick customer experience for switchers</td>
</tr>
<tr>
<td>- reducing considerably barriers to switch</td>
<td></td>
</tr>
<tr>
<td>- decreasing barriers to entry for new operators</td>
<td></td>
</tr>
<tr>
<td>- Benefit final customers by:</td>
<td>- DEFENSIVE POSITION: try to limit MNP effects on market by promoting strict process and capacity requirements and encouraging rules and lead times that allow retention and win back</td>
</tr>
<tr>
<td>- creating downward pressure on prices</td>
<td></td>
</tr>
<tr>
<td>- forcing operators/service providers to increase their efforts in customer care & cultivation, quality of service and coverage</td>
<td></td>
</tr>
</tbody>
</table>
Operators can play on both regulatory influence & commercial behaviours to achieve their promoter vs. defensive objectives

Key levers for MNP implementation

- Regulatory levers: Topics to be influenced during the design / review of MNP common rules and mechanisms
- Commercial levers: Marketing and commercial actions/behaviours to maximize/minimize MNP impact, given a certain regulatory framework
MNP effectiveness is determined by market conditions and the way overall model and activation process are defined.

Strategic areas for MNP implementation:

Market characteristics

- How overall MNP architectural model and governance are designed
- MNP Model
 - B.1 DB model
 - B.2 Voice, SMS & International routing
 - B.3 Regulatory path for MNP adoption

How MNP activation process works, which activities/costs are performed/sustained by the different actors

- Activation process
 - Order processing & Authentication
 - Port initiation
 - Technical porting
 - Credit transfer
Why Regulator to Implement MNP

Industry Trio

Regulator
- Encourage Investment
- Efficient Use of Infrastructure
- Ensuring Competition

Industry
- Return of Investment
- Uniform Standard and inter connectivity
- Fair Regulation

Consumer
- Consumer benefit from New Services
- QOS
- Value for Money
Methodology to Implement

- Policy
- Regulation
- Implementation
- Board / Consortium
- Solution
- Interface
- Testing
- Subscriber Guideline
- Soft Launch
- Advertisement and Launch
- Monitoring and Improvement
Basic MNP Definitions

- **Originating Network**
 Network where the calling party is located.

- **Number Range Holder Network**
 Network who originally owns the mobile number series.

- **Recipient Operator**
 The Recipient is the operator who receives porting-numbers into their network.

- **Donor Operator**
 The Donor operator is the operator who number is being ported-out to another network.
Recipient Operator intimates the case number to subscriber

Recipient Operator verifies credentials & initiates a Number porting request electronically by providing relevant details to the donor operator.

Subscriber will initiate the number porting request to the recipient operator. The applicant shall provide the requisite information to the recipient operator who will register the request and record it in its database.

SMS/CALL/Any Preferred way of Communication for SIM Collection (Intimation of De-Activation/Activation Time after SIM Collection)

The donor operator shall accept the NPR and intimate to the recipient operator & the NPR shall be executed within one hour to complete the porting process. The De-activation Time will also be coordinated with Recipient Operator.
Recipient Operator intimates the case number to the subscriber.

Recipient Operator verifies credentials & initiates a Number porting request electronically by providing relevant details to the donor operator.

Subscriber will initiate the number porting request to the recipient operator. The applicant shall provide the requisite information to the recipient operator who will register the request and record it in its database.

Subscriber receives outstanding balance and either accepts to pay the informed charges or denies the said charges.

After receiving outstanding dues, the donor operator shall accept the NPR and intimate to the recipient operator & the NPR shall be executed within one hour to complete the porting process. The De-Activation time will be coordinated with Recipient Operator.

The Subscriber shall pay the outstanding balance within 1-day by Pay order / Cash / Cheque / demand draft or credit card.
MNP Process Strategy

Recipient Network

NPR (Number Port Request)

Donor Network

Reply (Credit + ID Confirmed)

Balance (Confirmed)

Number Ported out

NPR Accepted

Advised to CDB

Subscriber Ported Out

MNP CDB
1. NPDB Configuration/Architecture
 - Centralized MNP Configuration
 - Distributed MNP Configuration
 - Hybrid MNP Configuration

2. Technology (Solution)
 - MNP_SRF Based Solution
 - IN Based Solution

3. Routing Schemes
 - Direct Routing
 - Indirect Routing
 - Indirect Routing with Reference to Subscription network
1. **Centralized NPDB Configuration.**
 - One Central NPDB supplies porting information to all interrogating entities (GMSC/MSC, SMSC, SCP etc.) belonging to all MNP supporting networks.

2. **Distributed NPDB Configuration.**
 - Each network operator maintains its own NPDB(s) to query for porting information before routing the call/SMS/MMS to other mobile numbers.

3. **Hybrid NPDB Configuration.**
 - Each network operator maintains its own NPDB(s) which are updated by a Central MNPDB. Each network operator queries its own NPDB before routing calls/SMS/MMS to other mobile numbers.
Centralized NPDB Configuration

Signalling Link

Speech & Signalling Link

NPDB

SMSC

MSC/GMSC

HLR

IN

SMSC

MSC/GMSC

HLR

IN
Distributed NPDB Configuration

Signalling Link

Speech & Signalling Link
Comparison Between Centralized & Distributed NPDB Configurations

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized NPDB Configuration</td>
<td>CAPEX savings (Only one pair of NPDB required).</td>
<td>Outage of NPDB or degradation/outrage of link to NPDB affects all mobile originating (MO) and mobile terminating (MT) calls in ACQ option.</td>
</tr>
<tr>
<td></td>
<td>Synchronization problem (between NPDBs belonging to different operators) avoided.</td>
<td>Integration issues: All network operators need to comply to the interfacing standard supported by the NPDB.</td>
</tr>
<tr>
<td>Distributed NPDB Configuration</td>
<td>Outage of a single NPDB (pair) has less impact on the overall mobile originated and terminated call connectivity.</td>
<td>More CAPEX required (Each operator needs to maintain its own NPDB. Integration issues between NPDBs belonging to different operators. Problems in reconciliation of porting data in the absence of a single server (synchronization issue).</td>
</tr>
</tbody>
</table>
MNP Implementation in Pakistan

- **Hybrid NPDB Configuration**

 Central MNP Database is maintained by Pakistan MNP Database (Guarantee) Ltd (PMD). PMD’s BOD comprises of representatives from all six Cellular Mobile Operators.

- Each network operator maintains its own Number Portability Gateway (NPG) and NP Database(s) for storing porting information.

- **Call/SMS Routing Mechanism**

 - Direct Call/SMS Routing model adopted.

 - However, onward routing is allowed if mutually agreed between the Number Range Holder network and non-MNP compliant network operators. Onward Routed calls are charged by the Number Range Holder network.
NPC: Number Portability Clearing House (Maintains central NPDB).
NPG: Number Portability Gateway (Interfaces NPC with Operators business systems and local NPDBs)
Generally TCP/IP Link is used for communication between NPG (Number Portability Gateway) and NPDB (Number Portability Database) residing with a network entity (STP/HLR). The interface protocol (e.g. CORBA, SOAP, PDBI etc.) is dependent on the NPDB application used by the Network Operator.

When provisioning the Porting data, NPG may also send the Portability type information to the NPDB:

- **Portability types**
 - Ported In
 - Own number Ported Out
 - Cross Ported between other network operators (Foreign Ported to Foreign Network)
Call Routing for Ported Numbers

All Call Query

Query on Release

Drop back

Onward Routing
Database architectures for ported numbers

B.1 MNP – Database models

- **Centralized**
 - Single and centralized system for all Operators
 - Each operator signs a service delivery contract with the central DB provider
 - Operators appoint a legal entity as Administrator
 - NP Administrator holds contracts with operators for service delivery
 - Only NP Administrator queries the Central DB

- **Distributed**
 - Each operator has its own database, periodically aligned with those of the other operators
 - Individual, direct and multilateral agreements are necessary to synchronise portability data
 - No Database is used
 - Each operator only knows where its numbers have been ported the first time

- **No DB**
 - No Database is used
 - Each operator only knows where its numbers have been ported the first time

B - MNP model

- Operators
 - Administration
 - Centralized DB
 - NP Administrator
 - Centralized DB
 - Structure compatible with onward routing only
Direct Routing requires higher set up costs, but guarantees constant variable costs, Onward is more suitable for small ports volumes

Direct Routing vs Onward Routing

<table>
<thead>
<tr>
<th>Total cost (for operators)</th>
<th>Average cost per ported number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Routing</td>
<td>Onward Routing</td>
</tr>
<tr>
<td>DB set-up</td>
<td>Onward Routing</td>
</tr>
<tr>
<td>Break even point</td>
<td>Direct Routing</td>
</tr>
<tr>
<td>Ported numbers</td>
<td>Break even point</td>
</tr>
</tbody>
</table>

Comments and key implications

- **Direct Routing** needs a **significant initial investment**, especially for centralized DBs, with constant and comparably lower variable costs per ported number.
- **Onward routing** has **almost no set-up costs**, but higher **and increasing variable costs** (multiple ports of same number).
- **Onward Routing** appears to be a solution more suitable in case of time constraints and in small markets.
Alternative models are differently placed along the key dimensions and must be evaluated specifically in each country.

Architectural models positioning along main dimensions

<table>
<thead>
<tr>
<th>Market characteristics</th>
<th>Costs</th>
<th>Implementation characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td># of players</td>
</tr>
<tr>
<td>Centralized DB - Direct Routing(^1)</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Distributed DB - Direct Routing</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>No DB - Indirect Routing</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

1. Central DB with Indirect Routing is also possible, with higher opex than the direct and applicable when expected MNP are low.
Different combinations are possible with alternative database architectures and routing models

MNP system combinations

<table>
<thead>
<tr>
<th></th>
<th>Direct Routing</th>
<th>Indirect Routing</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All calls Direct</td>
<td>All calls Third Party</td>
<td>Onward Routing</td>
<td>Calls on release</td>
<td>Calls drop back</td>
<td>Resolutio n & transit</td>
</tr>
<tr>
<td>Centralized DB direct</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Centralized DB Indirect</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributed DB</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NO Database</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Governance relates to all phases of MNP implementation, from consultation to launch & ongoing operations

B.3 Regulatory path to MNP implementation

<table>
<thead>
<tr>
<th>Main phases</th>
<th>Consultation</th>
<th>Development</th>
<th>Implementation</th>
<th>Launch and operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration range</td>
<td>6-18 months</td>
<td>6-12 months</td>
<td>6-15 months</td>
<td>1-3 months</td>
</tr>
</tbody>
</table>
| Involved parties | • NRA¹ (leading activities)
• Operators
• Eventual service vendors (DB management, number provisioning) | • NRA
• Eventual PMO
• Operators
• Eventual vendors interacting with MNO | • PMO/ NRA
• Operators
• Eventual DB provider
• Eventual Service contractors | • Operators
• PMO/NRA |
| Main activities | • Consultation issuing
• Contribution collection
• Eventual public hearings and results publication
• Regulatory impact assessment | • Detailed definition of MNP models and activation process
• NP requirements definition
• Eventual Vendor selection
• Guidelines production and stakeholders alignment | • Development and implementation of relevant changes:
– Routing
– Provisioning
– Retail process
– Communication flows
– …
• Pilot deployment
• Systems testing | • Promotional activities and communication
• Sales channels (or other enabled) activation for requests
• Internal change management |

1. National Regulatory Authority
2. Indicative figures based on country experiences
 Source: Laurasia Associates, A.T. Kearney analysis
MNP activation process define activities, requirements and actors involved in each step

C - Activation process overview

<table>
<thead>
<tr>
<th>Process steps</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order processing</td>
<td>• Customer submission of MNP request and order processing</td>
</tr>
<tr>
<td>Authentication</td>
<td>• Customer identification and verification of ID matching with number</td>
</tr>
<tr>
<td>Port initiation</td>
<td>• Communication of the MNP request to interested parties and technical process initiation</td>
</tr>
<tr>
<td>Port provisioning</td>
<td>• Network Operator/Service Provider provisioning on its Network, OSS, BSS and other systems</td>
</tr>
<tr>
<td>Port notification</td>
<td>• Port notification to other Network Operators and other involved parties</td>
</tr>
<tr>
<td>Port validation</td>
<td>• MNP request validation or rejection</td>
</tr>
<tr>
<td>Inter-operator communication</td>
<td>• Coordination between Network Operators for “cut-over” date provisioning and NP Database alignment</td>
</tr>
<tr>
<td>Routing</td>
<td>• De-activation on Donating network and activation on Recipient Network with new routing number provisioning</td>
</tr>
<tr>
<td>Residual credit management</td>
<td>• Management of the residual customer credit (restitution/ transfer etc.)</td>
</tr>
</tbody>
</table>
Effectiveness of MNP implementation is driven by 18 levers to be managed on a tailored approach on a country by country basis.

Key levers for MNP implementation – analysis framework

<table>
<thead>
<tr>
<th>Endogenous areas</th>
<th>Key levers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Architectural model</td>
</tr>
<tr>
<td></td>
<td>2. MNP scope</td>
</tr>
</tbody>
</table>

Activation process

- Order processing & Authentication
- Ports initiation
- Technical Porting
- Credit transfer

Overall levers

- 7. Originator of the process
- 8. Lead time
- 9. Capacity management
- 10. Costing
- 11. Customer experience
- 12. Technical solutions
- 13. Retention & Win-back

Step related levers

- 14. Sales channels
- 15. Authentication requirements
- 16. Bad debt treatment
- 17. KO management
- 18. Residual credit management

*Italic = regulatory and commercial lever
Normal = regulatory lever*
There are 17 Regulatory levers to be influenced

Key levers for MNP implementation – analysis framework

<table>
<thead>
<tr>
<th>Endogenous areas</th>
<th>Key levers</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>MNP model</td>
</tr>
<tr>
<td>C</td>
<td>MNP activation process</td>
</tr>
</tbody>
</table>

Customer acquisition

- 5. Communication
- 6. Promotion

Activation process

- Order processing & Authentication
- Ports initiation
- Technical Porting
- Credit transfer

Overall levers

- 7. Originator of the process
- 8. Lead time
- 9. Capacity management
- 10. Costing
- 11. Customer experience
- 12. Technical solutions
- 13. Retention & Win-back

Step related levers

- 14. Sales channels
- 15. Authentication requirements
- 16. Bad debt treatment
- 17. KO management
- 18. Residual credit management

Italic = regulatory and commercial lever

Normal = regulatory lever
MNP architecture is set aside from promoter/defensive approach needs to be evaluated case by case along several dimensions

MNP Model key levers – 1. Architectural model

<table>
<thead>
<tr>
<th>Key dimensions to be considered</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market characteristics</td>
<td></td>
</tr>
<tr>
<td>Number of players</td>
<td>• Number of Operators competing in the country</td>
</tr>
<tr>
<td></td>
<td>• Number of potential new entrants</td>
</tr>
<tr>
<td>Market CB</td>
<td>• Actual and prospective market CB size and characteristics</td>
</tr>
<tr>
<td></td>
<td>• Expected number of portability requests</td>
</tr>
<tr>
<td>Costs</td>
<td></td>
</tr>
<tr>
<td>Capex</td>
<td>• Investment to set up central or distributed Database</td>
</tr>
<tr>
<td></td>
<td>• Investments for upgrades and integration of operators’ systems</td>
</tr>
<tr>
<td>Opex</td>
<td>• Variable cost related to on-going routing services (termination fees, look-up fees, central administration)</td>
</tr>
<tr>
<td></td>
<td>• Operative costs related to operators’ system alignment (for each portability) and periodical updates (additional integration for new entrants)</td>
</tr>
<tr>
<td>Implementation characteristics</td>
<td></td>
</tr>
<tr>
<td>Implementation time</td>
<td>• Time for system regulatory definition (i.e. meeting for technical specification and vendor selection) + Time for technical implementation of selected MNP system</td>
</tr>
<tr>
<td>System efficiency</td>
<td>• System on-going call routing performance</td>
</tr>
<tr>
<td>Level of control</td>
<td>• System security (data back up, recovery, assurance etc.)</td>
</tr>
<tr>
<td></td>
<td>• Control over sensible and relevant ported numbers data storage</td>
</tr>
<tr>
<td></td>
<td>• Control over flows (i.e. call transit through the donor network in indirect models)</td>
</tr>
</tbody>
</table>
Thanks to its higher long term efficiency, most countries opted for a centralized direct routing model.

Architectural models implemented in the world - 2011

Source: ITU (2011) GSMA
MNP has been introduced in most EU and American markets and is being implemented in emerging countries.

MNP global timeline

Europe
- Netherlands (1999)
- UK (1999)
- Spain (2000)
- Switzerland (2000)
- Denmark (2001)
- Norway (2001)
- Sweden (2001)
- Belgium (2002)
- Germany (2002)
- Italy (2002)
- Portugal (2002)
- Finland (2003)
- France (2003)
- Ireland (2003)
- Austria (2004)
- Cyprus (2004)
- Greece (2004)
- Slovak Republic (2004)
- Croatia (2005)
- Estonia (2005)
- Lithuania (2005)
- Slovenia (2005)
- Czech Republic (2006)
- Latvia (2006)
- Poland (2006)
- Bulgaria (2008)
- Luxembourg (2008)
- Macedonia (2008)
- Romania (2008)
- Turkey (2008)

Asia-Pacific
- Hong Kong (1999)
- Australia (2001)
- Macau (2001)
- South Korea (2004)
- Taiwan (2005)
- Japan (2006)
- New Zealand (2007)
- Pakistan (2007)
- Malaysia (2008)
- Singapore (2008)
- India (2011)
- Thailand (2011)

Americas
- USA (2003)
- Canada (2007)
- Brazil (2008)
- Mexico (2008)
- Dominican Republic (2009)
- Ecuador (2009)
- Peru (2011)

MENA
- Oman (2006)
- Saudi Arabia (2006)
- Israel (2007)
- Egypt (2008)
- Jordan (2010)
- Nigeria (2011)

Thanks to its higher long term efficiency, most countries opted for a centralized direct routing model.

Source: ITU (2011) GSMA
Impact of MNP on Operators

- Decision to deploy stand-alone STP or to use the joint STP feature of switch (operator dependant);
- Choice of NPDB is operator dependant and based on network size and cost of implementation;
- Addition of NPDB Node(s);
- Configuration updates on switches for Triggering NP Queries, SW upgrades on switches for enabling Query Mechanism, Change in Routing Tables and Change in Digit Analysis Algorithms;
- Change in Call flow;
- Addition of Signaling interfaces on Switches and Core Network DB e.g. IN systems, SMSC, HLR etc
- Additional Processor Load for executing NP Queries
- Continued -

- New SOP for Porting in and out Processes and their integration into the Business workflow;
- Define and integrate new Backend processes for executing NP requests;
- Introduction of NP Administrative Process for acquisition and release of a customer;
- Setting up interface with Business Systems for Pushing, Changing and Deleting Routing information from NPDB;
- Changes in CDR to include porting information for correct charging. Update to Real Time Charging and Billing Systems;
- Setting up of back office to handle and process NP requests;
- Training of call centre staff, customer services front end staff and franchise operations;
- Additional Business Reporting and Analysis.
REPORTING MECHANISM

<table>
<thead>
<tr>
<th>Consolidated Rejection Stats</th>
<th>From 01 Apr 15 to 30 Apr 15</th>
<th>From 01 May 15 to 31 May 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total NPRs</td>
<td>80,366</td>
<td>91,503</td>
</tr>
<tr>
<td>Total Ported</td>
<td>39,170</td>
<td>66,843</td>
</tr>
<tr>
<td>Total Ported Percentage</td>
<td>48.74%</td>
<td>73.05%</td>
</tr>
<tr>
<td>CONTROLLABLE REJECTIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R05A (Name Mismatch)</td>
<td>497</td>
<td>389</td>
</tr>
<tr>
<td>R05B (NIC-CNIC Mismatch)</td>
<td>445</td>
<td>528</td>
</tr>
<tr>
<td>R05C (SIM# Mismatch)</td>
<td>685</td>
<td>929</td>
</tr>
<tr>
<td>Controllable Rejections total</td>
<td>1,627</td>
<td>1,846</td>
</tr>
<tr>
<td>Controllable Rejections Percentage</td>
<td>2.02%</td>
<td>2.02%</td>
</tr>
</tbody>
</table>
Consolidated Rejection Stats:

<table>
<thead>
<tr>
<th></th>
<th>From 01 Apr 15 to 30 Apr 15</th>
<th>From 01 May 15 to 31 May 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCONTROLLABLE REJECTIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R01A (Contract Oblig)</td>
<td>1,209 1.50%</td>
<td>4,153 4.54%</td>
</tr>
<tr>
<td>R02A (Not a Primary #)</td>
<td>95 0.12%</td>
<td>1 0.00%</td>
</tr>
<tr>
<td>R03A (Disconnected #)</td>
<td>22 0.03%</td>
<td>36 0.04%</td>
</tr>
<tr>
<td>R04A (Blocked SIM)</td>
<td>465 0.58%</td>
<td>309 0.34%</td>
</tr>
<tr>
<td>R06A (Balance Outstanding)</td>
<td>6,642 8.26%</td>
<td>12,508 13.67%</td>
</tr>
<tr>
<td>R07A (MSP)</td>
<td>539 0.67%</td>
<td>154 0.17%</td>
</tr>
<tr>
<td>R08A (Pending Action - MSISDN Change/Litigation)</td>
<td>14,395 17.91%</td>
<td>214 0.23%</td>
</tr>
<tr>
<td>R08B (Pending Action - Change of Ownership)</td>
<td>8,517 10.60%</td>
<td>310 0.34%</td>
</tr>
<tr>
<td>R09A (667 Message Service Not Used)</td>
<td>5,612 6.98%</td>
<td>4,927 5.38%</td>
</tr>
<tr>
<td>Uncontrollable Rejections total</td>
<td>37,496 46.66%</td>
<td>22,612 24.71%</td>
</tr>
<tr>
<td>Total Rejections</td>
<td>39,123 48.68%</td>
<td>24,458 26.73%</td>
</tr>
<tr>
<td>NPRs in Process</td>
<td>8,133 10.12%</td>
<td>8,335 9.11%</td>
</tr>
<tr>
<td>NPRs Processed of Last Month</td>
<td>6,060</td>
<td>8,133</td>
</tr>
</tbody>
</table>
Dispute Resolution and Escalation

Porting Requests in Processing
Ported Numbers

Aggregate Rejections having %age < 1

- Port in Process: 8,335 (8%)
- Others Rejections: 1,941 (2%)
- R06A (Balance Outstanding): 12,508 (13%)
- R05C (SIM# Mismatch): 929 (1%)
- R01A (Contract Oblig): 4,153 (4%)
- R09A (667 Message Service Not Used): 4,927 (5%)
- Total Ported: 66,843 (67%)

Controllable
Uncontrollable
Thank You